

 Unicode Set

 v1.3.0

 [image: Logo]

 Table of contents

 	Unicode Set

 	License

 	Changelog

 	Modules

 	Unicode.Regex

 	Unicode.Regex.Match

 	Unicode.Set

 	Unicode.Set.Operation

 	Unicode.Set.Search

 	Unicode.Set.ParseError

Unicode Set

[image: Build Status]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
A Unicode Set is a representation of a set of Unicode characters or character strings. The contents of that set are specified by patterns or by building them programmatically. This library implements parsing of unicode sets, resolving them to a list of codepoints and matching a given codepoint to that list. This expansion supports the following public API:
	Unicode.Set.match?/2 which is a macro that matches a codepoint to a unicode set.
	Unicode.Regex.compile/2 which pre-processes a regex string expanding unicode sets into a regex executable by the Regex module.
	Unicode.Set.to_utf8_char/1 that converts a unicode set into a form usable with nimble_parsec
	Unicode.Set.compile_pattern/1 which converts a unicode set into a string that is then compiled with :binary.compile_pattern/1.

The implementation conforms closely to the Unicode Set specification but currently omits support for the \N{codepoint_name} syntax.

 Usage

 Function guards

This is helpful in defining function guards. For example:
defmodule Guards do
 require Unicode.Set

 # Define a guard that checks if a codepoint is a unicode digit
 defguard digit?(x) when Unicode.Set.match?(x, "[[:Nd:]]")
end

defmodule MyModule do
 require Guards

 # Define a function using the previously defined guard
 def my_function(<< x :: utf8, _rest :: binary>>) when Guards.digit?(x) do
 IO.puts "Its a digit!"
 end

 # Define a guard directly on the function
 def my_other_function_(<< x :: utf8, _rest :: binary>>) when Unicode.Set.match?(x, "[[:Nd:]]") do
 IO.puts "Its also a digit!"
 end
end

 Generating compiled patterns for String matching

String.split/3 and String.replace/3 allow for patterns and compiled patterns to be used with compiled patterns being the more performant approach. Unicode Set supports the generation of patterns and compiled patterns:
iex> pattern = Unicode.Set.compile_pattern!("[[:digit:]]")
iex> list = String.split("abc1def2ghi3jkl", pattern)
["abc", "def", "ghi", "jkl"]

 Generating NimbleParsec ranges

The parser generator nimble_parsec allows a list of codepoint ranges as parameters to several combinators. Unicode Set can generate such ranges:
iex> Unicode.Set.to_utf8_char!("[[^abcd][mnb]]")
[98, 109..110, {:not, 97..100}]
This can be used as shown in the following example:
defmodule MyCombinators do
 import NimbleParsec

 @digit_list = Unicode.Set.to_utf8_char!("[[:digit:]]")
 def unicode_digit do
 utf8_char(@digit_list)
 |> label("a digit in any Unicode script")
 end
end

 Compiling extended regular expressions

The Regex module supports a limited set of Unicode Sets. The Unicode.Regex module provides compile/2 and compile!/2 functions that have the same arguments and compatible functionality with Regexp.compile/2 other that they pre-process the regular expression, expanding any Unicode Sets. This makes it simple to incorporate Unicode Sets in regular expressions.
All Unicode Sets are expanded, even those that are known to Regex.compile/2 since the erlang :re module upon Regex is based does not always keep pace with Unicode releases.
For example:
iex> Unicode.Regex.compile("\\p{Zs}")
{:ok, ~r/[\x{20}\x{A0}\x{1680}\x{2000}-\x{200A}\x{202F}\x{205F}\x{3000}]/u}

iex> Unicode.Regex.compile("[:graphic:]")
{:ok,
 ~r/[\x{20}-\x{7E}\x{A0}-\x{AC}\x{AE}-\x{377}\x{37A}-\x{37F}...]/u}

 Other Examples

These examples show how to combine sets (union, difference and intersection) to deliver a flexible targeting of the required match.
The character "๓" is the thai digit `1`
iex> Unicode.Set.match? ?๓, "[[:digit:]]"
true

Set operations allow union, insersection and difference
This example matches on digits, but not the Thai script
iex> Unicode.Set.match? ?๓, "[[:digit:]-[:thai:]]"
false

 Compile time parsing

As much work as possible is done at compile time in order to deliver good performance. The macro Unicode.Set.match?/2 parses the unicode set, expands the require codepoints and generates guard clauses at compile time. The resulting code is a simple set of boolean operators that executes quickly at runtime.

 Supported Unicode properties

This version of Unicode Set supports the following enumerable unicode properties in unicode sets:
	script such as [:script=arabic:], \p{script=arabic} or [:arabic:]
	block such as [:block=sudanese:], \p{block=sudanese}, \p{IsSudanese} or [:IsSudanese:]
	general category such as [:Lu:], \p{Lu}, [:gc=Lu:] or [:general category=Lu:]
	combining class such as [:ccc=230:]

In addition, the following boolean properties are supported. These are expressed as [:white space:] or \p{White Space}.
	Property	Property	Property	Property
	alphabetic	ascii_hex_digit	bidi_control	cased
	changes_when_casemapped	changes_when_lowercased	changes_when_titlecased	changes_when_uppercased
	dash	default_ignorable_code_point	deprecated	diacritic
	extender	grapheme_base	grapheme_extend	grapheme_link
	hex_digit	hyphen	id_continue	id_start
	ideographic	ids_binary_operator	ids_trinary_operator	join_control
	logical_order_exception	lowercase	math	noncharacter_code_point
	other_alphabetic	other_default_ignorable_code_point	other_grapheme_extend	other_id_continue
	other_id_start	other_lowercase	other_math	other_uppercase
	pattern_syntax	pattern_white_space	prepended_concatenation_mark	quotation_mark
	radical	regional_indicator	sentence_terminal	soft_dotted
	terminal_punctuation	unified_ideograph	uppercase	variation_selector
	white_space	xid_continue	xid_start	changes_when_casefolded

In all cases, property names and property values may include whitespace and mixed case notation.

 General Categories

	Abbreviation	Long Form
	L	Letter
	Lu	Uppercase Letter
	Ll	Lowercase Letter
	Lt	Titlecase Letter
	Lm	Modifier Letter
	Lo	Other Letter
	M	Mark
	Mn	Non-Spacing Mark
	Mc	Spacing Combining Mark
	Me	Enclosing Mark
	N	Number
	Nd	Decimal Digit Number
	Nl	Letter Number
	No	Other Number
	S	Symbol
	Sm	Math Symbol
	Sc	Currency Symbol
	Sk	Modifier Symbol
	So	Other Symbol
	P	Punctuation
	Pc	Connector Punctuation
	Pd	Dash Punctuation
	Ps	Open Punctuation
	Pe	Close Punctuation
	Pi	Initial Punctuation
	Pf	Final Punctuation
	Po	Other Punctuation
	Z	Separator
	Zs	Space Separator
	Zl	Line Separator
	Zp	Paragraph Separator
	C	Other
	Cc	Control
	Cf	Format
	Cs	Surrogate
	Co	Private Use
	Cn	Unassigned

	Derived Categories	Long Form
	Any	Any all code points [\u{0}-\u{10FFFF}]
	Assigned	Assigned all assigned characters meaning \P{Cn}
	ASCII	ASCII all ASCII characters [\u{0}-\u{7F}]

 Compatibility Property Names

	Property	Unicode Category	Comments
	alpha	\p{Alphabetic}	Alphabetic includes more than gc = Letter. Note that combining marks (Me, Mn, Mc) are required for words of many languages. While they could be applied to non-alphabetics, their principal use is on alphabetics. Alphabetic should not be used as an approximation for word boundaries: see word below.
	lower	\p{Lowercase}	Lowercase includes more than gc = Lowercase_Letter (Ll).
	upper	\p{Uppercase}	Uppercase includes more than gc = Uppercase_Letter (Lu).
	punct	\p{gc=Punctuation} \p{gc=Symbol} - \p{alpha}	Punctuation and symbols.
	digit	\p{gc=Decimal_Number}	[0..9] Non-decimal numbers (like Roman numerals) are normally excluded.
	xdigit	\p{gc=Decimal_Number} \p{Hex_Digit}	[0-9 A-F a-f] Hex_Digit contains 0-9 A-F, fullwidth and halfwidth, upper and lowercase.
	alnum	\p{alpha} \p{digit}	Simple combination of other properties
	space	\p{Whitespace}	
	blank	\p{gc=Space_Separator} \N{CHARACTER TABULATION}	"horizontal" whitespace: space separators plus U+0009 tab.
	cntrl	\p{gc=Control}	The characters in \p{gc=Format} share some, but not all aspects of control characters. Many format characters are required in the representation of plain text.
	graph	[^\p{space} \p{gc=Control} \p{gc=Surrogate} \p{gc=Unassigned}]	Warning: the set shown here is defined by excluding space, controls, and so on with ^.
	print	\p{graph} \p{blank} -- \p{cntrl}	Includes graph and space-like characters.
	word	\p{alpha} \p{gc=Mark} \p{digit} \p{gc=Connector_Punctuation} \p{Join_Control}	This is only an approximation to Word Boundaries. The Connector Punctuation is added in for programming language identifiers, thus adding _ and similar characters.

 Additional Derived properties

In addition to the Unicode properties, some additional properties are also defined for convenience. These properties related to quote marks and are:
	quote_mark
	quote_mark_left
	quote_mark_right
	quote_mark_ambidextrous
	quote_mark_single
	quote_mark_double

As above these properties can be expressed in mixed case with spaces and underscores inserted for readability. They can be used in the same way as any Unicode property name.

 Example Unicode Sets

Here are a few examples of sets. Although elements of the syntax appear similar to regular expressions, unicode sets only expresses one or more ranges of unicode codepoints.
	Pattern	Description
	[a-z]	The lower case letters a through z
	[abc123]	The six characters a,b,c,1,2 and 3
	[\p{Letter}]	All characters with the Unicode General Category of Letter

 String Values

In addition to being a set of characters (of Unicode code points), a UnicodeSet may also contain string values. Conceptually, the UnicodeSet is always a set of strings, not a set of characters, although in many common use cases the strings are all of length one, which reduces to being a set of characters.
This concept can be confusing when first encountered, probably because similar set constructs from other environments (regular expressions) can only contain characters.

 Unicode Set Patterns

Patterns are a series of characters bounded by square brackets that contain lists of characters and Unicode property sets. Lists are a sequence of characters that may have ranges indicated by a '-' between two characters, as in "a-z". The sequence specifies the range of all characters from the left to the right, in Unicode order. For example, [a c d-f m] is equivalent to [a c d e f m]. Whitespace can be freely used for clarity as [a c d-f m] means the same as [acd-fm].
Unicode property sets are specified by a Unicode property, such as [:Letter:]. For a list of supported properties, see the Properties section. For details on the use of short vs. long property and property value names, see the end of this section. The syntax for specifying the property names is an extension of either POSIX or Perl syntax with the addition of =value. For example, you can match letters by using the POSIX syntax [:Letter:], or by using the Perl-style syntax \p{Letter}. The type can be omitted for the Category and Script properties, but is required for other properties.
The table below shows the two kinds of syntax: POSIX and Perl style. Also, the table shows the "Negative", which is a property that excludes all characters of a given kind. For example, [:^Letter:] matches all characters that are not [:Letter:].
	Style	Positive	Negative
	POSIX-style Syntax	[:type=value:]	[:^type=value:]
	Perl-style Syntax	\p{type=value}	\P{type=value}

These following low-level lists or properties then can be freely combined with the normal set operations (union, inverse, difference, and intersection):
	Example	Meaning
	A B [[:letter:] [:number:]]	To union two sets A and B, simply concatenate them
	A & B [[:letter:] & [a-z]]	To intersect two sets A and B, use the '&' operator.
	A - B [[:letter:] - [a-z]]	To take the set-difference of two sets A and B, use the '-' operator.
	[^A] [^a-z]	To invert a set A, place a ^ immediately after the opening [. Note that the complement only affects code points, not string values. In any other location, the ^ does not have a special meaning.

 Precedence

The binary operators of union, intersection, and set-difference have equal precedence and bind left-to-right. Thus the following are equivalent:
	[[:letter:] - [a-z] [:number:] & [\u0100-\u01FF]]
	[[[[[:letter:] - [a-z]] [:number:]] & [\u0100-\u01FF]]

Another example is that the set [[ace][bdf] - [abc][def]] is not the empty set, but instead the set [def]. That is because the syntax corresponds to the following UnicodeSet operations:
	start with [ace]
	union [bdf] -- we now have [abcdef]
	subtract [abc] -- we now have [def]
	union [def] -- no effect, we still have [def]

This only really matters where there are the difference and intersection operations, as the union operation is commutative. To make sure that the - is the main operator, add brackets to group the operations as desired, such as [[ace][bdf] - [[abc][def]]].
Another caveat with the & and - operators is that they operate between sets. That is, they must be immediately preceded and immediately followed by a set. For example, the pattern [[:Lu:]-A] is illegal, since it is interpreted as the set [:Lu:] followed by the incomplete range -A. To specify the set of uppercase letters except for A, enclose the A in a set: [[:Lu:]-[A]].

 Examples

	[a] The set containing 'a'
	[a-z] The set containing 'a' through 'z' and all letters in between, in Unicode order
	[^a-z] The set containing all characters but 'a' through 'z', that is, U+0000 through 'a'-1 and 'z'+1 through U+FFFF
	[[pat1][pat2]] The union of sets specified by pat1 and pat2
	[[pat1]&[pat2]] The intersection of sets specified by pat1 and pat2
	[[pat1]-[pat2]] The asymmetric difference of sets specified by pat1 and pat2
	[:Lu:] The set of characters belonging to the given Unicode category; in this case, Unicode uppercase letters. The long form for this is [:UppercaseLetter:].
	[:L:] The set of characters belonging to all Unicode categories starting with 'L', that is, [[:Lu:][:Ll:][:Lt:][:Lm:][:Lo:]]. The long form for this is [:Letter:].

 String Values in Sets

String values are enclosed in {curly brackets}.
	Set expression	Description
	[abc{def}]	A set containing four members, the single characters a, b and c, and the string “def”
	[{abc}{def}]	A set containing two members, the string “abc” and the string “def”.
	[{a}{b}{c}][abc]	These two sets are equivalent. Each contains three items, the three individual characters a, b and c. A {string} containing a single character is equivalent to that same character specified in any other way.

 Character Quoting and Escaping in Unicode Set Patterns

 Single Quote

Two single quotes represents a single quote, either inside or outside single quotes.
Text within single quotes is not interpreted in any way (except for two adjacent single quotes). It is taken as literal text (special characters become non-special).
These quoting conventions for ICU UnicodeSets differ from those of regular expression character set expressions. In regular expressions, single quotes have no special meaning and are treated like any other literal character.

 Backslash Escapes

Outside of single quotes, certain backslashed characters have special meaning. Note that these are escapes processed by Unicode Set (this library) and therefore require \\\\ to be entered as a prefix. Elixir also provides similar escapes as native part of its string processing and Elixir's escapes are to be preferred where possible.
	Escape	Description
	\uhhhh	Exactly 4 hex digits; h in [0-9A-Fa-f]
	\Uhhhhhhhh	Exactly 8 hex digits
	\xhh	1-2 hex digits

Certain other escapes are native to Elixir and are applicable in Unicode Sets they are in any Elixir string:
	Escape	Description
	\a	U+0007 (BELL)
	\b	U+0008 (BACKSPACE)
	\t	U+0009 (HORIZONTAL TAB)
	\n	U+000A (LINE FEED)
	\v	U+000B (VERTICAL TAB)
	\f	U+000C (FORM FEED)
	\r	U+000D (CARRIAGE RETURN)
	\	U+005C (BACKSLASH)
	\xDD	represents a single byte in hexadecimal (such as \x13)
	\uDDDD and \u{D...}	represents a Unicode codepoint in hexadecimal (such as \u{1F600})

Anything else following a backslash is mapped to itself, except in an environment where it is defined to have some special meaning. For example, \p{Lu} is the set of uppercase letters in a Unicode Set.
Any character formed as the result of a backslash escape loses any special meaning and is treated as a literal. In particular, note that \u and \U escapes create literal characters.

 Whitespace

Whitespace (as defined by the specification) is ignored unless it is quoted or backslashed.

 Property Values

The following property value variants are recognized:
	Format	Example	Description
	short	Lu	omits the type (used to prevent ambiguity and only allowed with the Category and Script properties)
	medium	gc=Lu	uses an abbreviated type and value
	long	General_Category=Uppercase_Letter	uses a full type and value

If the type or value is omitted, then the equals sign is also omitted. The short style is only
used for Category and Script properties because these properties are very common and their omission is unambiguous.
In actual practice, you can mix type names and values that are omitted, abbreviated, or full. For example, if Category=Unassigned you could use what is in the table explicitly, \p{gc=Unassigned}, \p{Category=Cn}, or \p{Unassigned}.
When these are processed, case and whitespace are ignored so you may use them for clarity, if desired. For example, \p{Category = Uppercase Letter} or \p{Category = uppercase letter}.

 Installation

To install, add the package unicode_set to your list of dependencies in mix.exs:
def deps do
 [
 {:unicode_set, "~> 1.0"}
]
end
Documentation can be found at https://hexdocs.pm/unicode_set.

License

Copyright 2019 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Changelog

 Unicode Set 1.3.1

This is the changelog for Unicode Set 1.3.1 released on _ 2023. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix warnings for Elixir 1.16.

 Unicode Set 1.3.0

This is the changelog for Unicode Set 1.3.0 released on February 18th, 2023. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Correct the code examples in README.md. Thanks to @DianaOlympos for the PR. Closes #9.

 Enhancements

	Add Unicode.Set.compile_pattern!/1 to accompany Unicode.Set.compile_pattern/1.

 Unicode Set 1.2.0

This is the changelog for Unicode Set 1.2.0 released on September 15th, 2022. For older changelogs please consult the release tag on GitHub

 Enhancements

	Update parsing code to ensure compatibility against future deprecations. Thanks to @josevalim.

	Fix library name in doc links. Thanks to @zmaril for the PR.

	Update dependencies. Thanks to @kianmeng.

 Unicode Set 1.1.0

This is the changelog for Unicode Set 1.1.0 released on September 15th, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	ex_unicode is renamed to unicode in collaboration with @Qqwy and therefore this release updates the dependency name.

 Unicode Set 1.0.0

This is the changelog for Unicode Set 1.0.0 released on September 14th, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	Update to use Unicode 14

 Unicode Set 0.13.1

This is the changelog for Unicode Set 0.13.1 released on May 25th, 2021. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Update dependency configuration to mark ex_doc and benchee as optional. Thanks to @fireproofsocks.

 Unicode Set 0.13.0

This is the changelog for Unicode Set 0.13.0 released on April 4th, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds Unicode.Set.to_generate_matches/1 that returns a tuple whose first element is the AST of a guard clause and the second element is a list of strings. This function is marked private and is implemented to support unicode_transform which uses this information to generate optimised code for matching unicode sets in a case expression.

 Unicode Set 0.12.0

This is the changelog for Unicode Set 0.12.0 released on February 23rd, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds support for "isBlockName" Perl and POSIX regex syntax. Used in a regex as [[:isLatin1]] or \p{isLatin1} or their inverse forms [[:^isLatin1]] and \P{isLatin1}.

 Unicode Set 0.11.0

This is the changelog for Unicode Set 0.11.0 released on October 5th, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Add recursively defined sets to support compatibility with Posix classes. See Unicode.Set.Property.

 Bug Fixes

	Fix various bugs in set operations for Union, Difference, Intersection abd Complement

	Correctly parse and interpret set complements such as [^[:^Sc:]] and more complex sets such as [^[[:Sc:]-[:^Lu:]]]

 Unicode Set 0.10.0

This is the changelog for Unicode Set 0.10.0 released on October 2nd, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix list composition in Unicode.Set.to_uft8_char/1

 Unicode Set 0.9.0

This is the changelog for Unicode Set 0.9.0 released on October 2nd, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Support nimble_parsec version 1.x. Thanks to @josevalim for the PR.

 Unicode Set 0.8.0

This is the changelog for Unicode Set 0.8.0 released on July 12th, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Rewrite Unicode.Regex module to better extract character classes, process unicode sets and build Elixir regexs. Now also supports string ranges.

	Supports the property East Asian Width (short name ea) which is required for implementing the Unicode segmentation algorithms. Also bumps the minimum requirement for ex_unicode version 1.8.

 Unicode Set 0.7.0

This is the changelog for Unicode Set v.07.0 released on May 18th, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Add Unicode.Set.character_class/1 which returns a string compatible with Regex.compile/2. This supports the idea of expanded Unicode Sets being used in standard Elixir/erlang regular expressions and will underpin implementation of Unicode Transforms in the package unicode_transform

	Add Unicode.Regex.compile/2 to pre-process a regex to expand Unicode Sets and the compile it with Regex.compile/2. Unicode.Regex.compile!/2 is also added.

 Bug Fixes

	Fixes a bug whereby a Unicode Set intersection would fail with a character class that starts at the same codepoint as the Unicode set.

 Unicode Set 0.6.0

This is the changelog for Unicode Set v.06.0 released on May 13th, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Unicode sets are now a %Unicode.Set{} struct

	Add Unicode.Set.Sigil implementing sigil_u

	Add support for String.Chars and Inspect protocols

 Bug Fixes

	Fixes parsing sets to ignore non-encoded whitespace

	Fixes intersection and difference set operations for sets that include string ranges like {abc}

 Unicode Set 0.5.1

This is the changelog for Unicode Set v.05.1 released on March 14th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Compacts tuple-ranges in order to minimize the number of generated clauses in guards. Requires at least ex_unicode version 1.5.0.

 Unicode Set 0.5.0

This is the changelog for Unicode Set v.05.0 released on March 11th, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Updates ex_unicode to version 1.4.0 which includes support for Unicode version 13.0 as well as support for several derived categories related to quote marks.

 Unicode Set 0.4.2

This is the changelog for Unicode Set v.04.2 released on February 25th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Allow \n, \t and \r, \s as part of character classes

 Unicode Set 0.4.1

This is the changelog for Unicode Set v.04.1 released on January 8th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix Unicode.Set.Operation.difference/2 when one list is wholly contained within another

 Unicode Set 0.4.0

This is the changelog for Unicode Set v.04.0 released on November 27th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Bump to ex_unicode to version 1.3.0 to support an expanded set of properties resolved by unicode_set.

 Unicode Set 0.3.0

This is the changelog for Unicode Set v.03.0 released on November 26th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Support string ranges expressed as {abc} or {abc}-{def}

	Note that the supported proporties in this release are script, block, category and combining class.

 Unicode Set 0.2.0

This is the changelog for Unicode Set v.02.0 released on November 24th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Add Unicode.Set.compile_pattern/1 and Unicode.Set.pattern/1 to generate patterns and compiled patterns compatible with String.split/3 and String.replace/3.

	Add Unicode.Set.utf8_char/1 that generates a list of codepoint ranges compatible with nimble_parsec combinators.

Set the README for example usage.

 Unicode Set 0.1.0

This is the changelog for Unicode Set v.01.0 released on November 23rd, 2019. For older changelogs please consult the release tag on GitHub
Initial release.

Unicode.Regex

Implements Unicode regular expressions
by transforming them into regular expressions supported by
the Elixir Regex module.

 Summary

 Functions

 compile(string, options \\ "u")

 Compiles a binary regular expression after
expanding any Unicode Sets.

 compile!(string, opts \\ "u")

 Compiles a binary regular expression after
interpolating any Unicode Sets.

 is_perl_set(c)

 match?(regex_string, string, opts \\ "u")

 Returns a boolean indicating whether there was a match or not
with a Unicode Set.

 split_character_classes(string)

 Split a regex into character classes
so that these can then be later compiled.

 Functions

 Link to this function

 compile(string, options \\ "u")

 View Source

Compiles a binary regular expression after
expanding any Unicode Sets.

 Arguments

	string is a regular expression in
string form

	options is a string or a list which is
passed unchanged to Regex.compile/2.
The default is "u" meaning the regular
expression will operate in Unicode mode

 Returns

	{:ok, regex} or

	{:error, {message, index}}

 Notes

This function operates by splitting the string
at the boundaries of Unicode Set markers which
are:
	Posix style: [: and :]
	Perl style: \p{ and }

This parsing is naive meaning that is does not
take any character escaping into account when s
plitting the string.

 Example

iex> Unicode.Regex.compile("[:Zs:]")
{:ok, ~r/[\x{20}\x{A0}\x{1680}\x{2000}-\x{200A}\x{202F}\x{205F}\x{3000}]/u}

iex> Unicode.Regex.compile("\\p{Zs}")
{:ok, ~r/[\x{20}\x{A0}\x{1680}\x{2000}-\x{200A}\x{202F}\x{205F}\x{3000}]/u}

iex> Unicode.Regex.compile("[:ZZZZ:]")
{:error, {'POSIX named classes are supported only within a class', 0}}

 Link to this function

 compile!(string, opts \\ "u")

 View Source

Compiles a binary regular expression after
interpolating any Unicode Sets.

 Arguments

	string is a regular expression in
string form.

	options is a string or a list which is
passed unchanged to Regex.compile/2.
The default is "u" meaning the regular
expression will operate in Unicode mode

 Returns

	regex or

	raises an exception

 Example

iex> Unicode.Regex.compile!("[:Zs:]")
~r/[\x{20}\x{A0}\x{1680}\x{2000}-\x{200A}\x{202F}\x{205F}\x{3000}]/u

 Link to this macro

 is_perl_set(c)

 View Source

 (macro)

 Link to this function

 match?(regex_string, string, opts \\ "u")

 View Source

Returns a boolean indicating whether there was a match or not
with a Unicode Set.

 Arguments

	regex_string is a regular expression in
string form.

	string is any string against which
the regex match is executed

	options is a string or a list which is
passed unchanged to Regex.compile/2.
The default is "u" meaning the regular
expression will operate in Unicode mode

 Returns

	a boolean indicating if there was a match or

	raises an exception if regex is not
a valid regular expression.

 Example

iex> Unicode.Regex.match?("[:Sc:]", "$")
true

 Link to this function

 split_character_classes(string)

 View Source

Split a regex into character classes
so that these can then be later compiled.

 Arguments

	string is a regular expression in
string form.

 Returns

	A list of string split at the
boundaries of unicode sets

 Example

iex> Unicode.Regex.split_character_classes("This is [:Zs:] and more")
["This is ", "[:Zs:]", " and more"]

Unicode.Regex.Match

Unicode.Set

 Usage

 Function guards

This is helpful in defining function guards. For example:
defmodule Guards do
 require Unicode.Set

 # Define a guard that checks if a codepoint is a unicode digit
 defguard digit?(x) when Unicode.Set.match?(x, "[[:Nd:]]")
end

defmodule MyModule do
 require Guards

 # Define a function using the previously defined guard
 def my_function(<< x :: utf8, _rest :: binary>>) when Guards.digit?(x) do
 IO.puts "Its a digit!"
 end

 # Define a guard directly on the function
 def my_other_function_(<< x :: utf8, _rest :: binary>>) when Unicode.Set.match?(x, "[[:Nd:]]") do
 IO.puts "Its also a digit!"
 end
end

 Generating compiled patterns for String matching

String.split/3 and String.replace/3 allow for patterns and compiled patterns to be used with compiled patterns being the more performant approach. Unicode Set supports the generation of patterns and compiled patterns:
iex> pattern = Unicode.Set.compile_pattern!("[[:digit:]]")
iex> list = String.split("abc1def2ghi3jkl", pattern)
["abc", "def", "ghi", "jkl"]

 Generating NimbleParsec ranges

The parser generator nimble_parsec allows a list of codepoint ranges as parameters to several combinators. Unicode Set can generate such ranges:
iex> Unicode.Set.to_utf8_char!("[[^abcd][mnb]]")
[98, 109..110, {:not, 97..100}]
This can be used as shown in the following example:
defmodule MyCombinators do
 import NimbleParsec

 @digit_list = Unicode.Set.to_utf8_char!("[[:digit:]]")
 def unicode_digit do
 utf8_char(@digit_list)
 |> label("a digit in any Unicode script")
 end
end

 Compiling extended regular expressions

The Regex module supports a limited set of Unicode Sets. The Unicode.Regex module provides compile/2 and compile!/2 functions that have the same arguments and compatible functionality with Regexp.compile/2 other that they pre-process the regular expression, expanding any Unicode Sets. This makes it simple to incorporate Unicode Sets in regular expressions.
All Unicode Sets are expanded, even those that are known to Regex.compile/2 since the erlang :re module upon Regex is based does not always keep pace with Unicode releases.
For example:
iex> Unicode.Regex.compile("\\p{Zs}")
{:ok, ~r/[\x{20}\x{A0}\x{1680}\x{2000}-\x{200A}\x{202F}\x{205F}\x{3000}]/u}

iex> Unicode.Regex.compile("[:graphic:]")
{:ok,
 ~r/[\x{20}-\x{7E}\x{A0}-\x{AC}\x{AE}-\x{377}\x{37A}-\x{37F}...]/u}

 Other Examples

These examples show how to combine sets (union, difference and intersection) to deliver a flexible targeting of the required match.
The character "๓" is the thai digit `1`
iex> Unicode.Set.match? ?๓, "[[:digit:]]"
true

Set operations allow union, insersection and difference
This example matches on digits, but not the Thai script
iex> Unicode.Set.match? ?๓, "[[:digit:]-[:thai:]]"
false

 Compile time parsing

As much work as possible is done at compile time in order to deliver good performance. The macro Unicode.Set.match?/2 parses the unicode set, expands the require codepoints and generates guard clauses at compile time. The resulting code is a simple set of boolean operators that executes quickly at runtime.

 Supported Unicode properties

This version of Unicode Set supports the following enumerable unicode properties in unicode sets:
	script such as [:script=arabic:], \p{script=arabic} or [:arabic:]
	block such as [:block=sudanese:], \p{block=sudanese}, \p{IsSudanese} or [:IsSudanese:]
	general category such as [:Lu:], \p{Lu}, [:gc=Lu:] or [:general category=Lu:]
	combining class such as [:ccc=230:]

In addition, the following boolean properties are supported. These are expressed as [:white space:] or \p{White Space}.
	Property	Property	Property	Property
	alphabetic	ascii_hex_digit	bidi_control	cased
	changes_when_casemapped	changes_when_lowercased	changes_when_titlecased	changes_when_uppercased
	dash	default_ignorable_code_point	deprecated	diacritic
	extender	grapheme_base	grapheme_extend	grapheme_link
	hex_digit	hyphen	id_continue	id_start
	ideographic	ids_binary_operator	ids_trinary_operator	join_control
	logical_order_exception	lowercase	math	noncharacter_code_point
	other_alphabetic	other_default_ignorable_code_point	other_grapheme_extend	other_id_continue
	other_id_start	other_lowercase	other_math	other_uppercase
	pattern_syntax	pattern_white_space	prepended_concatenation_mark	quotation_mark
	radical	regional_indicator	sentence_terminal	soft_dotted
	terminal_punctuation	unified_ideograph	uppercase	variation_selector
	white_space	xid_continue	xid_start	changes_when_casefolded

In all cases, property names and property values may include whitespace and mixed case notation.

 General Categories

	Abbreviation	Long Form
	L	Letter
	Lu	Uppercase Letter
	Ll	Lowercase Letter
	Lt	Titlecase Letter
	Lm	Modifier Letter
	Lo	Other Letter
	M	Mark
	Mn	Non-Spacing Mark
	Mc	Spacing Combining Mark
	Me	Enclosing Mark
	N	Number
	Nd	Decimal Digit Number
	Nl	Letter Number
	No	Other Number
	S	Symbol
	Sm	Math Symbol
	Sc	Currency Symbol
	Sk	Modifier Symbol
	So	Other Symbol
	P	Punctuation
	Pc	Connector Punctuation
	Pd	Dash Punctuation
	Ps	Open Punctuation
	Pe	Close Punctuation
	Pi	Initial Punctuation
	Pf	Final Punctuation
	Po	Other Punctuation
	Z	Separator
	Zs	Space Separator
	Zl	Line Separator
	Zp	Paragraph Separator
	C	Other
	Cc	Control
	Cf	Format
	Cs	Surrogate
	Co	Private Use
	Cn	Unassigned

	Derived Categories	Long Form
	Any	Any all code points [\u{0}-\u{10FFFF}]
	Assigned	Assigned all assigned characters meaning \P{Cn}
	ASCII	ASCII all ASCII characters [\u{0}-\u{7F}]

 Compatibility Property Names

	Property	Unicode Category	Comments
	alpha	\p{Alphabetic}	Alphabetic includes more than gc = Letter. Note that combining marks (Me, Mn, Mc) are required for words of many languages. While they could be applied to non-alphabetics, their principal use is on alphabetics. Alphabetic should not be used as an approximation for word boundaries: see word below.
	lower	\p{Lowercase}	Lowercase includes more than gc = Lowercase_Letter (Ll).
	upper	\p{Uppercase}	Uppercase includes more than gc = Uppercase_Letter (Lu).
	punct	\p{gc=Punctuation} \p{gc=Symbol} - \p{alpha}	Punctuation and symbols.
	digit	\p{gc=Decimal_Number}	[0..9] Non-decimal numbers (like Roman numerals) are normally excluded.
	xdigit	\p{gc=Decimal_Number} \p{Hex_Digit}	[0-9 A-F a-f] Hex_Digit contains 0-9 A-F, fullwidth and halfwidth, upper and lowercase.
	alnum	\p{alpha} \p{digit}	Simple combination of other properties
	space	\p{Whitespace}	
	blank	\p{gc=Space_Separator} \N{CHARACTER TABULATION}	"horizontal" whitespace: space separators plus U+0009 tab.
	cntrl	\p{gc=Control}	The characters in \p{gc=Format} share some, but not all aspects of control characters. Many format characters are required in the representation of plain text.
	graph	[^\p{space} \p{gc=Control} \p{gc=Surrogate} \p{gc=Unassigned}]	Warning: the set shown here is defined by excluding space, controls, and so on with ^.
	print	\p{graph} \p{blank} -- \p{cntrl}	Includes graph and space-like characters.
	word	\p{alpha} \p{gc=Mark} \p{digit} \p{gc=Connector_Punctuation} \p{Join_Control}	This is only an approximation to Word Boundaries. The Connector Punctuation is added in for programming language identifiers, thus adding _ and similar characters.

 Additional Derived properties

In addition to the Unicode properties, some additional properties are also defined for convenience. These properties related to quote marks and are:
	quote_mark
	quote_mark_left
	quote_mark_right
	quote_mark_ambidextrous
	quote_mark_single
	quote_mark_double

As above these properties can be expressed in mixed case with spaces and underscores inserted for readability. They can be used in the same way as any Unicode property name.

 Example Unicode Sets

Here are a few examples of sets. Although elements of the syntax appear similar to regular expressions, unicode sets only expresses one or more ranges of unicode codepoints.
	Pattern	Description
	[a-z]	The lower case letters a through z
	[abc123]	The six characters a,b,c,1,2 and 3
	[\p{Letter}]	All characters with the Unicode General Category of Letter

 String Values

In addition to being a set of characters (of Unicode code points), a UnicodeSet may also contain string values. Conceptually, the UnicodeSet is always a set of strings, not a set of characters, although in many common use cases the strings are all of length one, which reduces to being a set of characters.
This concept can be confusing when first encountered, probably because similar set constructs from other environments (regular expressions) can only contain characters.

 Unicode Set Patterns

Patterns are a series of characters bounded by square brackets that contain lists of characters and Unicode property sets. Lists are a sequence of characters that may have ranges indicated by a '-' between two characters, as in "a-z". The sequence specifies the range of all characters from the left to the right, in Unicode order. For example, [a c d-f m] is equivalent to [a c d e f m]. Whitespace can be freely used for clarity as [a c d-f m] means the same as [acd-fm].
Unicode property sets are specified by a Unicode property, such as [:Letter:]. For a list of supported properties, see the Properties section. For details on the use of short vs. long property and property value names, see the end of this section. The syntax for specifying the property names is an extension of either POSIX or Perl syntax with the addition of =value. For example, you can match letters by using the POSIX syntax [:Letter:], or by using the Perl-style syntax \p{Letter}. The type can be omitted for the Category and Script properties, but is required for other properties.
The table below shows the two kinds of syntax: POSIX and Perl style. Also, the table shows the "Negative", which is a property that excludes all characters of a given kind. For example, [:^Letter:] matches all characters that are not [:Letter:].
	Style	Positive	Negative
	POSIX-style Syntax	[:type=value:]	[:^type=value:]
	Perl-style Syntax	\p{type=value}	\P{type=value}

These following low-level lists or properties then can be freely combined with the normal set operations (union, inverse, difference, and intersection):
	Example	Meaning
	A B [[:letter:] [:number:]]	To union two sets A and B, simply concatenate them
	A & B [[:letter:] & [a-z]]	To intersect two sets A and B, use the '&' operator.
	A - B [[:letter:] - [a-z]]	To take the set-difference of two sets A and B, use the '-' operator.
	[^A] [^a-z]	To invert a set A, place a ^ immediately after the opening [. Note that the complement only affects code points, not string values. In any other location, the ^ does not have a special meaning.

 Precedence

The binary operators of union, intersection, and set-difference have equal precedence and bind left-to-right. Thus the following are equivalent:
	[[:letter:] - [a-z] [:number:] & [\u0100-\u01FF]]
	[[[[[:letter:] - [a-z]] [:number:]] & [\u0100-\u01FF]]

Another example is that the set [[ace][bdf] - [abc][def]] is not the empty set, but instead the set [def]. That is because the syntax corresponds to the following UnicodeSet operations:
	start with [ace]
	union [bdf] -- we now have [abcdef]
	subtract [abc] -- we now have [def]
	union [def] -- no effect, we still have [def]

This only really matters where there are the difference and intersection operations, as the union operation is commutative. To make sure that the - is the main operator, add brackets to group the operations as desired, such as [[ace][bdf] - [[abc][def]]].
Another caveat with the & and - operators is that they operate between sets. That is, they must be immediately preceded and immediately followed by a set. For example, the pattern [[:Lu:]-A] is illegal, since it is interpreted as the set [:Lu:] followed by the incomplete range -A. To specify the set of uppercase letters except for A, enclose the A in a set: [[:Lu:]-[A]].

 Examples

	[a] The set containing 'a'
	[a-z] The set containing 'a' through 'z' and all letters in between, in Unicode order
	[^a-z] The set containing all characters but 'a' through 'z', that is, U+0000 through 'a'-1 and 'z'+1 through U+FFFF
	[[pat1][pat2]] The union of sets specified by pat1 and pat2
	[[pat1]&[pat2]] The intersection of sets specified by pat1 and pat2
	[[pat1]-[pat2]] The asymmetric difference of sets specified by pat1 and pat2
	[:Lu:] The set of characters belonging to the given Unicode category; in this case, Unicode uppercase letters. The long form for this is [:UppercaseLetter:].
	[:L:] The set of characters belonging to all Unicode categories starting with 'L', that is, [[:Lu:][:Ll:][:Lt:][:Lm:][:Lo:]]. The long form for this is [:Letter:].

 String Values in Sets

String values are enclosed in {curly brackets}.
	Set expression	Description
	[abc{def}]	A set containing four members, the single characters a, b and c, and the string “def”
	[{abc}{def}]	A set containing two members, the string “abc” and the string “def”.
	[{a}{b}{c}][abc]	These two sets are equivalent. Each contains three items, the three individual characters a, b and c. A {string} containing a single character is equivalent to that same character specified in any other way.

 Character Quoting and Escaping in Unicode Set Patterns

 Single Quote

Two single quotes represents a single quote, either inside or outside single quotes.
Text within single quotes is not interpreted in any way (except for two adjacent single quotes). It is taken as literal text (special characters become non-special).
These quoting conventions for ICU UnicodeSets differ from those of regular expression character set expressions. In regular expressions, single quotes have no special meaning and are treated like any other literal character.

 Backslash Escapes

Outside of single quotes, certain backslashed characters have special meaning. Note that these are escapes processed by Unicode Set (this library) and therefore require \\\\ to be entered as a prefix. Elixir also provides similar escapes as native part of its string processing and Elixir's escapes are to be preferred where possible.
	Escape	Description
	\uhhhh	Exactly 4 hex digits; h in [0-9A-Fa-f]
	\Uhhhhhhhh	Exactly 8 hex digits
	\xhh	1-2 hex digits

Certain other escapes are native to Elixir and are applicable in Unicode Sets they are in any Elixir string:
	Escape	Description
	\a	U+0007 (BELL)
	\b	U+0008 (BACKSPACE)
	\t	U+0009 (HORIZONTAL TAB)
	\n	U+000A (LINE FEED)
	\v	U+000B (VERTICAL TAB)
	\f	U+000C (FORM FEED)
	\r	U+000D (CARRIAGE RETURN)
	\	U+005C (BACKSLASH)
	\xDD	represents a single byte in hexadecimal (such as \x13)
	\uDDDD and \u{D...}	represents a Unicode codepoint in hexadecimal (such as \u{1F600})

Anything else following a backslash is mapped to itself, except in an environment where it is defined to have some special meaning. For example, \p{Lu} is the set of uppercase letters in a Unicode Set.
Any character formed as the result of a backslash escape loses any special meaning and is treated as a literal. In particular, note that \u and \U escapes create literal characters.

 Whitespace

Whitespace (as defined by the specification) is ignored unless it is quoted or backslashed.

 Property Values

The following property value variants are recognized:
	Format	Example	Description
	short	Lu	omits the type (used to prevent ambiguity and only allowed with the Category and Script properties)
	medium	gc=Lu	uses an abbreviated type and value
	long	General_Category=Uppercase_Letter	uses a full type and value

If the type or value is omitted, then the equals sign is also omitted. The short style is only
used for Category and Script properties because these properties are very common and their omission is unambiguous.
In actual practice, you can mix type names and values that are omitted, abbreviated, or full. For example, if Category=Unassigned you could use what is in the table explicitly, \p{gc=Unassigned}, \p{Category=Cn}, or \p{Unassigned}.
When these are processed, case and whitespace are ignored so you may use them for clarity, if desired. For example, \p{Category = Uppercase Letter} or \p{Category = uppercase letter}.

 Summary

 Types

 character_range()

 codepoint()

 codepoint_range()

 generated_match()

 nimble_list()

 nimble_range()

 operation()

 operator()

 range()

 range_list()

 state()

 string_range()

 t()

 Functions

 compile_pattern(unicode_set)

 Transforms a Unicode Set into a compiled
pattern that can be used with String.split/3
and String.replace/3.

 compile_pattern!(unicode_set)

 Transforms a Unicode Set into a compiled
pattern that can be used with String.split/3
and String.replace/3. Raises an exception on
error.

 match?(var, unicode_set)

 Returns a boolean based upon whether var
matches the provided unicode_set.

 parse(unicode_set)

 parse!(unicode_set)

 parse_and_reduce(unicode_set)

 Parses a unicode set and expands the
set expressions then compacts the
character ranges.

 parse_and_reduce!(unicode_set)

 to_pattern(unicode_set)

 Transforms a Unicode Set into a pattern
that can be used with String.split/3
and String.replace/3.

 to_pattern!(unicode_set)

 Transforms a Unicode Set into a pattern
that can be used with String.split/3
and String.replace/3.

 to_regex_string(unicode_set)

 Transforms a Unicode Set into a regex
string that can be used as an argument
to Regex.compile/1.

 to_regex_string!(unicode_set)

 Transforms a Unicode Set into a regex
string that can be used as an argument
to Regex.compile/1.

 to_utf8_char(unicode_set)

 Transforms a Unicode Set into a list of
codepoints that can be used with
nimble_parsec.

 to_utf8_char!(unicode_set)

 Transforms a Unicode Set into a list of
codepoints that can be used with
nimble_parsec.

 Types

 Link to this type

 character_range()

 View Source

 @type character_range() :: {codepoint(), codepoint()}

 Link to this type

 codepoint()

 View Source

 @type codepoint() :: 0..1_114_111

 Link to this type

 codepoint_range()

 View Source

 @type codepoint_range() :: %Range{first: codepoint(), last: codepoint(), step: term()}

 Link to this type

 generated_match()

 View Source

 @type generated_match() :: [Macro.t() | String.t()]

 Link to this type

 nimble_list()

 View Source

 @type nimble_list() :: [nimble_range()]

 Link to this type

 nimble_range()

 View Source

 @type nimble_range() ::
 codepoint() | codepoint_range() | {:not, codepoint() | codepoint_range()}

 Link to this type

 operation()

 View Source

 @type operation() ::
 [{operator(), operation() | range_list()}]
 | {operator(), operation() | range_list()}

 Link to this type

 operator()

 View Source

 @type operator() :: :union | :intersection | :difference | :in | :not_in

 Link to this type

 range()

 View Source

 @type range() :: character_range() | string_range()

 Link to this type

 range_list()

 View Source

 @type range_list() :: [range()]

 Link to this type

 state()

 View Source

 @type state() :: nil | :parsed | :reduced | :expanded

 Link to this type

 string_range()

 View Source

 @type string_range() :: {charlist(), charlist()}

 Link to this type

 t()

 View Source

 @type t() :: %Unicode.Set{
 parsed: operation() | range_list(),
 set: binary(),
 state: state()
}

 Functions

 Link to this function

 compile_pattern(unicode_set)

 View Source

 @spec compile_pattern(binary()) :: {:ok, [binary()]} | {:error, {module(), binary()}}

Transforms a Unicode Set into a compiled
pattern that can be used with String.split/3
and String.replace/3.
Compiled patterns
can be the more performant when matching strings.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	{:ok, compiled_pattern} or

	{:error, {exception, reason}}

 Example

iex> pattern = Unicode.Set.compile_pattern("[[:digit:]]")
{:ok, {:ac, #Reference<0.2927979228.2367029250.255911>}}
iex> String.split("abc1def2ghi3jkl", pattern)
["abc", "def", "ghi", "jkl"]

 Link to this function

 compile_pattern!(unicode_set)

 View Source

 (since 1.3.0)

 @spec compile_pattern!(binary()) :: [binary()] | no_return()

Transforms a Unicode Set into a compiled
pattern that can be used with String.split/3
and String.replace/3. Raises an exception on
error.
Compiled patterns
can be the more performant when matching strings.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	compiled_pattern or

	raises an exception.

 Example

iex> pattern = Unicode.Set.compile_pattern!("[[:digit:]]")
{:ac, #Reference<0.2927979228.2367029250.255911>}
iex> String.split("abc1def2ghi3jkl", pattern)
["abc", "def", "ghi", "jkl"]

 Link to this macro

 match?(var, unicode_set)

 View Source

 (macro)

Returns a boolean based upon whether var
matches the provided unicode_set.

 Arguments

	var is any integer variable (since codepoints
are integers)

	unicode_set is a binary representation of
a unicode set. An exception will be raised if unicode_set
is not a compile time binary

 Returns

	true or false

 Examples

	Unicode.Set.match?/2 can be used with defguard/1.
For example:

defguard is_lower(codepoint) when Unicode.Set.match?(codepoint, "[[:Lu:]]")
	Or as a guard clause itself:

def my_function(<< codepoint :: utf8, _rest :: binary>>)
 when Unicode.Set.match?(codepoint, "[[:Lu:]]")

 Link to this function

 parse(unicode_set)

 View Source

 @spec parse(binary()) :: {:ok, t()} | {:error, {module(), binary()}}

 Link to this function

 parse!(unicode_set)

 View Source

 @spec parse!(binary()) :: t() | no_return()

 Link to this function

 parse_and_reduce(unicode_set)

 View Source

 @spec parse_and_reduce(binary()) :: {:ok, t()} | {:error, {module(), binary()}}

Parses a unicode set and expands the
set expressions then compacts the
character ranges.

 Link to this function

 parse_and_reduce!(unicode_set)

 View Source

 @spec parse_and_reduce!(binary()) :: t() | no_return()

 Link to this function

 to_pattern(unicode_set)

 View Source

 @spec to_pattern(binary()) :: {:ok, [binary()]} | {:error, {module(), binary()}}

Transforms a Unicode Set into a pattern
that can be used with String.split/3
and String.replace/3.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	{:ok, pattern} or

	{:error, {exception, reason}}

 Example

iex> pattern = Unicode.Set.to_pattern "[[:digit:]]"
{:ok,
 ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "٠", "١", "٢", "٣",
 "٤", "٥", "٦", "٧", "٨", "٩", "۰", "۱", "۲", "۳", "۴", "۵", "۶",
 "۷", "۸", "۹", "߀", "߁", "߂", "߃", "߄", "߅", "߆", "߇", "߈", "߉",
 "०", "१", "२", "३", "४", "५", "६", "७", ...]}

 Link to this function

 to_pattern!(unicode_set)

 View Source

 @spec to_pattern!(binary()) :: [binary()] | no_return()

Transforms a Unicode Set into a pattern
that can be used with String.split/3
and String.replace/3.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	pattern or

	raises an exception

 Example

iex> pattern = Unicode.Set.to_pattern "[[:digit:]]"
["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "٠", "١", "٢", "٣",
 "٤", "٥", "٦", "٧", "٨", "٩", "۰", "۱", "۲", "۳", "۴", "۵", "۶",
 "۷", "۸", "۹", "߀", "߁", "߂", "߃", "߄", "߅", "߆", "߇", "߈", "߉"
 "०", "१", "२", "३", "४", "५", "६", "७", ...]

 Link to this function

 to_regex_string(unicode_set)

 View Source

 @spec to_regex_string(binary()) :: {:ok, binary()} | {:error, {module(), binary()}}

Transforms a Unicode Set into a regex
string that can be used as an argument
to Regex.compile/1.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	{:ok, regex_string} or

	{:error, {exception, reason}}

 Example

iex> Unicode.Set.to_regex_string "[[:Zs]-[]]"
{:ok, "[\x{3A}\x{5A}\x{73}]"}

 Link to this function

 to_regex_string!(unicode_set)

 View Source

 @spec to_regex_string!(binary()) :: binary() | no_return()

Transforms a Unicode Set into a regex
string that can be used as an argument
to Regex.compile/1.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	regex_string or

	raises an exception

 Example

iex> Unicode.Set.to_regex_string "[[:Zs]-[]]"
{:ok, "[\x{3A}\x{5A}\x{73}]"}

 Link to this function

 to_utf8_char(unicode_set)

 View Source

 @spec to_utf8_char(binary()) :: {:ok, nimble_list()} | {:error, {module(), binary()}}

Transforms a Unicode Set into a list of
codepoints that can be used with
nimble_parsec.
THe list of codepoints can be used as an
argument to NimbleParsec.utf8_char/1.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	{:ok, list_of_codepints} or

	{:error, {exception, reason}}

 Example

iex> pattern = Unicode.Set.to_utf8_char "[[:digit:]-[:Zs]]"
{:ok,
 [48..57, 1632..1641, 1776..1785, 1984..1993, 2406..2415, 2534..2543,
 2662..2671, 2790..2799, 2918..2927, 3046..3055, 3174..3183, 3302..3311,
 3430..3439, 3558..3567, 3664..3673, 3792..3801, 3872..3881, 4160..4169,
 4240..4249, 6112..6121, 6160..6169, 6470..6479, 6608..6617, 6784..6793,
 6800..6809, 6992..7001, 7088..7097, 7232..7241, 7248..7257, 42528..42537,
 43216..43225, 43264..43273, 43472..43481, 43504..43513, 43600..43609,
 44016..44025, 65296..65305, 66720..66729, 68912..68921, 69734..69743,
 69872..69881, 69942..69951, 70096..70105, 70384..70393, 70736..70745,
 70864..70873, 71248..71257, 71360..71369, ...]}

 Link to this function

 to_utf8_char!(unicode_set)

 View Source

 @spec to_utf8_char!(binary()) :: nimble_list() | no_return()

Transforms a Unicode Set into a list of
codepoints that can be used with
nimble_parsec.
THe list of codepoints can be used as an
argument to NimbleParsec.utf8_char/1.

 Arguments

	unicode_set is a string representation
of a Unicode Set

 Returns

	list_of_codepints or

	raises an exception

 Example

iex> pattern = Unicode.Set.to_utf8_char! "[[:digit:]-[:Zs]]"
[48..57, 1632..1641, 1776..1785, 1984..1993, 2406..2415, 2534..2543,
 2662..2671, 2790..2799, 2918..2927, 3046..3055, 3174..3183, 3302..3311,
 3430..3439, 3558..3567, 3664..3673, 3792..3801, 3872..3881, 4160..4169,
 4240..4249, 6112..6121, 6160..6169, 6470..6479, 6608..6617, 6784..6793,
 6800..6809, 6992..7001, 7088..7097, 7232..7241, 7248..7257, 42528..42537,
 43216..43225, 43264..43273, 43472..43481, 43504..43513, 43600..43609,
 44016..44025, 65296..65305, 66720..66729, 68912..68921, 69734..69743,
 69872..69881, 69942..69951, 70096..70105, 70384..70393, 70736..70745,
 70864..70873, 71248..71257, 71360..71369, ...]}

Unicode.Set.Operation

Functions to operate on Unicode sets:
	Intersection
	Difference
	Union
	Inversion

 Summary

 Functions

 combine(other)

 Combines all the ranges into a single list

 compact_ranges(ranges)

 Compact overlapping and adjacent ranges

 complement(set)

 Returns the complement (inverse) of a set.

 difference(a, b)

 Removes one list of 2-tuples
representing Unicode codepoints from
another.

 expand(unicode_set)

 Expand takes a reduced AST and expands
it into a single list of codepoint tuples.

 expand_string_range(arg1)

 expand_string_ranges(ranges)

 Expand string ranges like {ab}-{cd}

 has_difference_or_intersection?(arg1)

 Returns a boolean indicating whether the given
AST includes set operations intersection or
difference.

 intersect(a, b)

 Returns the intersection of two lists of
2-tuples representing codepoint ranges.

 reduce(unicode_set)

 Reduces all sets, properties and ranges to a list
of 2-tuples expressing a range of codepoints.

 symmetric_difference(this, that)

 Returns the difference of two lists of
2-tuples representing codepoint ranges.

 traverse(ranges, fun)

 Prewalks the expanded AST from a parsed
Unicode Set invoking a function on each
codepoint range in the set.

 traverse(range, var, fun)

 union(a_list, b_list)

 Merges two lists of 2-tuples representing
ranges of codepoints. The result is a
single list of 2-tuple codepoint ranges
that includes all codepoint from the
two lists.

 Functions

 Link to this function

 combine(other)

 View Source

Combines all the ranges into a single list
This function is called iff the Unicode
Sets are formed by unions only. If
the set operations of intersection or
difference are present then the ranges
will need to be expanded via expand/1.

 Link to this function

 compact_ranges(ranges)

 View Source

Compact overlapping and adjacent ranges

 Link to this function

 complement(set)

 View Source

Returns the complement (inverse) of a set.

 Link to this function

 difference(a, b)

 View Source

Removes one list of 2-tuples
representing Unicode codepoints from
another.
Returns the first list of codepoint
ranges minus the codepoints in the second
list.

 Link to this function

 expand(unicode_set)

 View Source

Expand takes a reduced AST and expands
it into a single list of codepoint tuples.

 Link to this function

 expand_string_range(arg1)

 View Source

 Link to this function

 expand_string_ranges(ranges)

 View Source

Expand string ranges like {ab}-{cd}

 Link to this function

 has_difference_or_intersection?(arg1)

 View Source

Returns a boolean indicating whether the given
AST includes set operations intersection or
difference.
When these operations exist then all ranges - including
^ ranges needs to be expanded. If there are no
intersections or differences then the ^ ranges can
be directly translated to guard clauses or a list of
elixir ranges.

 Link to this function

 intersect(a, b)

 View Source

Returns the intersection of two lists of
2-tuples representing codepoint ranges.
The result is a single list of codepoint
ranges that represents the common codepoints
in the two lists.

 Link to this function

 reduce(unicode_set)

 View Source

Reduces all sets, properties and ranges to a list
of 2-tuples expressing a range of codepoints.
It can return one of two forms
[{:in, [tuple_list]}] for an inclusion list
[{:not_in, [tuple_list]}] for an exclusion list
or a combination of both.
Attempts are made to preserve :not_in clauses
as long as possible since many uses, like regexes
and nimble_parsec can consume :not_in style
ranges.
When only single character classes are presented,
or several classes which are unions, :not_in
can be preserved.
When intersections and differences are required,
the rnages must be both reduced and expanded in
order for this set operations to complete.

 Link to this function

 symmetric_difference(this, that)

 View Source

Returns the difference of two lists of
2-tuples representing codepoint ranges.
The result is a single list of codepoint
ranges that represents the codepoints
that are in either of the two lists but
not both.

 Link to this function

 traverse(ranges, fun)

 View Source

Prewalks the expanded AST from a parsed
Unicode Set invoking a function on each
codepoint range in the set.

 Link to this function

 traverse(range, var, fun)

 View Source

 Link to this function

 union(a_list, b_list)

 View Source

Merges two lists of 2-tuples representing
ranges of codepoints. The result is a
single list of 2-tuple codepoint ranges
that includes all codepoint from the
two lists.

Unicode.Set.Search

 Summary

 Functions

 build_search_tree(tuple_list)

 extract_and_expand_string_ranges(tuples)

 member?(codepoint, search_tree)

 string_member?(string, strings)

 Functions

 Link to this function

 build_search_tree(tuple_list)

 View Source

 Link to this function

 extract_and_expand_string_ranges(tuples)

 View Source

 Link to this function

 member?(codepoint, search_tree)

 View Source

 Link to this function

 string_member?(string, strings)

 View Source

Unicode.Set.ParseError exception

Exception raised when an a Unicode Set cannot
be parsed

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

